## Time to Update the P-Value Dichotomy to a Trichotomy

Submitted by robweiss on Mon, 07/03/2017 - 17:58In executing a classical hypothesis test, a small $p$-value allows us to reject the null hypothesis and declare that the alternative hypothesis is true.

This classical decision requires a leap of faith: if the $p$-value is small, either something unusual occurred or the null hypothesis must be false.

These days we should add a third possibility. That we searched over several models and methods to find a small $p$-value. We need to update the $p$-value oath of decision making to state: Either something unusual happened, we searched to find a small $p$-value or the null hypothesis is false.

Note that being Bayesian doesn't necessarily avoid this problem. Suppose a regression model $Y = X\beta+ \mbox{error}$. Apologies for not defining notation, except that $\beta$ is a $p$-vector with elements $\beta_k$. One way to define a one-sided Bayesian $p$-value is the posterior probability that $\beta_k$ is less than zero. If this probability $P(\beta_k \lt 0 | Y)$ is near 0 or near 1, then we declare "significance". Basically the Bayesian $p$-value tells us how much certainty we have about the sign of $\beta_k$. The usual classical $p$-value is approximately twice the smaller of $P(\beta_k \lt 0 | Y)$ and $P(\beta_k \gt 0 | Y)$. How close the approximation is depends on the relative strength of the prior information to the information in the data, the observed Fisher information. The Bayesian $p$-value is subject to the same maximization by search over models as the classical $p$-value.

Bayesians have an alternative to merely searching over models however. We can do a mixture model (George and McCulloch 1993, JASA; Kuo and Mallick 1998, Sankhyā B) and incorporate all the models that we've searched over into a single model to calculate the $p$-value.

## Comments

## Biostat 285

Student name: Changhee Lee

Department: Electrical engineering